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Abstract

A central problem in the theory of genetic algorithms is the
characterization of problems that are difficult for GAs to optimize.
Many attempts to characterize such problems focus on the notion of
deception, defined in terms of the static average fitness of competing
schemas. This note argues this popular approach appears unlikely to
yield a predictive theory for genetic algorithms. Instead, the
characterization of hard problems must take into account the basic

features of genetic algorithms, especially their dynamic, biased
sampling strategy.
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1 INTRODUCTION

Since Holland’s early work on the analysis of genetic algorithms (GAs), the usual
approach has been to focus on the allocation of search effort to subspaces described by
schemas representing hyperplanes of the search space. The Schema Theorem (Holland,
1975) provides a description for the growth rate of schemas that depends on the observed
relative fitness of the schemas represented in the population. Bethke (1981) initiated
work on the formal characterization of problems that might be difficult for GAs to solve,
and presented an analysis of problems in terms of the static analysis of schema fitness.




Goldberg (1987) introduced the notion of "deception” in GAs, and defined a Minimal
Deceptive Problem (MDP). Goldberg’s experiments showed that GAs could usually
optimize the MDP. Nonetheless, "deception” is now widely regarded as a necessary
feature in problems that are difficult for GAs (Das and Whitley, 1991; Homaifar et al,
1991). Goldberg and his colleagues (Goldberg, Deb and Korb, 1991) have defined
messy GAs (mGAs) specifically to handle deceptive problems, and consider the use of
deceptive functions as test functions to be “critical to understanding the convergence of
mGAs, traditional GAs, or any other similarity-based search technique". The literature
on deception in GAs is growing rapidly (Battle & Vose, 1991; Goldberg 1989a, 1989b,
1989¢; Goldberg, Deb and Korb, 1991; Liepins & Vose, 1991; Mason, 1991; Whitley,
1991, 1992), so this certainly a topic that deserves careful scrutiny.

In previous papers (Grefenstette and Baker, 1989; Grefenstette, 1990) we have raised
some questions about this approach to the analysis of GAs, and others have begun to ask
similar questions (Mitchell and Forrest, 1991). This paper will try to clarify and expand
on the argument that the current definitions of deception are based on faulty assumptions
about the dynamics of GAs. We only address definitions of deception that are based on
the static analysis of hyperplanes. By static analysis, we mean the analysis based on the
average fitness of hyperplanes, when the average is taken over the entire search space.
Our fundamental point is that the dynamic behavior of genetic algorithms simply cannot
be predicted on the basis of the static analysis of hyperplanes. The remainder of the
paper is organized as follows: Section 2 discusses the Strong Building Block Hypothesis
(SBBH) that appears to underly much of the work on static hyperplane analysis. The
next two sections present counterexamples to the SBBH. Section 3 shows that some
functions that are highly deceptive according to the SBBH are, in fact, very easy for GAs
to optimize. Section 4 shows that some functions that have no deception and therefore
should be easy, according to the SBBH, are nearly impossible for GAs to optimize.
These counterexamples show that deception is neither necessary nor sufficient to make a
problem difficult for GAs. More importantly, the analysis of these results highlights the
shortcomings of the static analysis of hyperplane. As an aside to our main point, Section
5 shows that, even if the SBBH were true, all deceptive functions could be easily solved
by simple changes to the basic GA. Some final comments are contained in Section 6.

2 THE STRONG BUILDING BLOCK HYPOTHESIS
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growth in a hyperplane from one generation to the next as a function of the hyperplane’s
observed relative fitness (as well as other factors such as the influence of crossover and
mutation). The Schema Theorem is only directly applicable to a single generational
cycle, but it is natural to try to extrapolate it over many generations in order to
understand the long term dynamics of the GA. A formal extension of the Schema
Theorem is not yet available!, but there have been informal arguments about how the
Schema Theorem plays out over time, including Holland’s analogy to a k-armed bandit
problem. These informal accounts of the dynamics of GAs have become part of the
folklore of the field. For example, Goldberg (1989a, p. 41) asserts the "Building Block
Hypothesis": "[A] genetic algorithm seek[s] near optimal performance through the
juxtaposition of short, low-order, high performance schemata, or building blocks."

We will examine a slightly more operational version of this proposition, which we call:

The Strong Building Block Hypothesis (SBBH): GAs proceed by finding low
order schemas with the best static average fitness in each hyperplane
partition and using these to build up more complete solutions.

This hypothesis clearly underlies much of the recent published work in GA theory,
especially work on deception. For example, Goldberg (1989a) introduces the Minimal
Deceptive Problem as follows:

"[W]e still need to understand better what makes a problem difficult for a
simple GA. To investigate this matter further, let’s construct the simplest
problem that should cause a GA to diverge from the global optimum ... To
do this, we want to violate the building block hypothesis in the extreme." (p.
46)

The SBBH implies that functions for which the schemas associated with the optimum
have higher static average fitness than the competing schemas in their partitions ought to
be easy for GAs. For example, suppose the global optimum is 000 ... 0, and that

F(O#..4#) > f(1#..4)
£(O0#..#) > £ (O1#...4#)
£(O0%..8) > £ (10#..4)
£(O0#..4) > f(11#..4)

and so on for every hyperplane partition of the search space.2 According to the SBBH, a
GA should find f simple to optimize. In fact, such functions are commonly called "GA-

I A previous paper suggested some ideas in this direction (Grefenstette, 1990).

2 In this paper, f (S) refers to the static average fitness for schema S, that is, the mean fitness value of every
point described by that schema. This static average is independent of whatever points happen to be in the
population at any time.




easy" (Wilson, 1991).3

Conversely, the SBBH implies that functions for which which the schemas associated
with the optimum have lower static average fitness than the competing schemas in their
partitions ought to be difficult for GAs. For example, suppose the global optimum is 000
...0,and

FO#..4) < f(1#..4)

£ (00%..#) < f (O1#...#)
£(00#..#) < f(104...4#)
FO0#..4) < f(11#..4)

and so on. Then this function would be called "deceptive” (Goldberg, 1987).4

The SBBH is an appealing intuitive explanation for how GAs work, but it does not
follow from the Schema Theorem. The Schema Theorem describes the expected growth
of a hyperplane for a single generation based on its observed average fitness, that is,
based on the average fitness of current samples of the hyperplane in the population.
Over a period of generations, the observed average fitness of a hyperplane does not
necessarily reflect the static average fitness of the hyperplane. The SBBH arises when
we ignore the crucial distinction between observed average fitness and static average
fitness. Consequently, while the Schema Theorem certainly applies to GAs, the SBBH

does not.

There are at least two reasons why the SBBH fails to hold:
1. Biased sampling due to previous convergence.
2. Large variance within schemas.

The first factor is the most ubiquitous, since it arises even with a large population and
even if the variance within individual schemas are not large (but greater than 0). Once
the population begins to converge, even a little, it is no longer possible to estimate the
static average fitness of schemas using the information present in the current population.
The GA can only estimate the conditional average fitnesses, conditioned by the
converged alleles. That is, after the very first generation, the population represents a
heavily biased sample of all schemas. Admittedly, it is very hard to analyze the
conditional estimates of fitnesses, and so it may be tempting to limit our attention to
what happens at generation 0, but this is a pretty uninteresting period in the life of a GA.

3 We are not asserting that Wilson subscribes to the SBBH.
4 Goldberg’s experiments show that deceptive problems are not necessarily hard. However, he calls his
own results "surprising” (Goldberg, 1989a, p. 46, p. 51), presumably because they violate the SBBH.




In the next two sections, the reasons listed above are used to show why the notion of
deception is of so little use in predicting how difficult a function may or may not be for a
GA to optimize.

3 BIASED SAMPLING DUE TO PREVIOUS CONVERGENCE

The primary reason that analysis based on static average fitness of schema is a dead end
is that, except possibly for the very first generation, the population contains only a biased
sample of representatives from each schema. This is a normal feature of all GAs, but it
can yield results that are exactly the opposite of what one might expect from the SBBH.

Using this observation, it is a simple exercise to define problems that are highly
deceptive in the sense implied by the SBBH, but are actually easy for GAs to optimize.
Here is one example: Consider a 10-bit space representing the interval [0.0, 1.0] in
binary encoding. That is, 0000000000 represents 0.0 and 1111111111 represents 1.0.
We want to maximize f, defined by:

f (x) = x?, except for the following special cases:

F£(0111111111) = 1.01
F(0011111111) =1.02
£(0001111111) = 1.03
£(0000111111) = 1.04
£(0000011111) = 1.05
£(0000001111) = 1.06
£(0000000111) = 1.07
£(0000000011) = 1.08
£(0000000001) = 1.09
£(0000000000) = 1.10

According to Whitley (1991), this function is "Order 9 Deceptive"; that is, an
enumeration of all schema competitions shows that except for 0000000000 and
000000000#, every schema representing the optimum has a static average fitness less
than the competing schema representing the suboptimal 1111111111. Despite this high
level of deception, a standard GA (GENESIS) with population size 100 and the default
parameter settings finds the optimum after a few thousand trials.> What happens in
practice is that the GA rapidly converges toward the suboptimal 1111111111. Once the

5 One change to GENESIS was necessary -- the code that normally causes an abort after nearly converging
was disabled.




population has nearly converged, the special cases each successfully propagates, one at a
time.

Although this example is deliberately defined to be as simple as possible to allow us to
completely understand the dynamic of the genetic search, it is hoped that the reader will
easily see how the same general phenomena can happen in naturally occurring problems.
In any problem, as the search proceeds, the convergence in the population radically
alters the competition between competing hyperplanes, so that the static average
fitnesses become completely irrelevant. In the example, once the population has largely
converged to 1111111111, then the competition between the schema 1# ... # and O#...# in
fact becomes a competition between 1111111111 (with fitness 1.0) and 0111111111
(with fitness 1.01), and the latter prevails. Once the population converges largely to
0111111111, the competition between #O#HHHHH# and #1#HHHHHA becomes a
competition between between 0011111111 (with fitness 1.01) and 0111111111 (with
fitness 1.02).

Although this artificial example is an extreme case, it illustrates a perfectly normal
phenomena in GAs: the normal convergence of the population produces outcomes that
are at variance with the SBBH, because the samples from the competing hyperplanes are
highly biased. The example also suffices to show that some highly deceptive problems
are easy for GAs.®

4 LARGE VARIANCE WITHIN SCHEMA

The second shortcoming of the static analysis of schema fitness is that it usually ignores
the effects of variance of fitness within schemas. With a limited population size and
large variance within the schemas, even the sampling in the initial, random population
will produce errors in the estimate of each schema’s static average fitness. This schema
variance can also lead to results that are at variance with the SBBH.

As an example, we can define a class of problems that are "easy" in the sense implied by
the SBBH -- they have no deception -- but are in fact hard for GAs to optimize.
Consider a L-bit space representing the interval [0.0, 1.0] in binary encoding. Let f be
defined:

fx)=x% ifx>0,

6 Some defenders of deception have argued that this example is flawed because it depends on mutation to
keep the competition alive when the selective pressure drives the population toward complete convergence.
This is a curious argument since it seems to imply that deception is a problem only when there is no mutation
in the GA. It should be noted that the GA that solves this example uses a very common low mutation rate
(0.001).




f (0) = 2(L+l)

For any schema S such that the optimum is in S (that is, all the defined positions of S
have value 0), f (S) > 2, since the sum of the fitness of the points in S is at least 2+
and there are at most 2° points in the hyperplane. For any schema S such that the
optimum is not S, f(S)<1. So in any schema partition, the schema containing the
optimum has the highest static average fitness. That is, there is no deception at any level
in the function. Such functions are often called "GA-easy" (Liepins and Vose, 1991;
Wilson, 1991).

Suppose we run a standard GA on f with a population of size 100. If the optimum is not
in the initial population, it will probably never be found. (Of course, it might be created
by a lucky crossover or a very lucky multiple mutation.) Why is this function hard for
GAs? Because the schemas associated with the optimum have extremely high variance,
so the observed average fitness for the hyperplanes never reflects their static average
fitnesses, not even in the initial random population. Of course, this is a "needle-in-a-
haystack" function, so we don’t expect the GA to solve it on a regular basis. But it does
satisfy the commonly used definition of "GA-easy" that follows from the SBBH, so this
example provides a counterexample to the claim that only deceptive problems are
challenging for GAs (Das and Whitley, 1991).

In some cases with less extreme variance in the schemas, we might be able to reduce the
variance associated with the observed fitness of a schema by increasing the population
size. Based on this observation, it is tempting to think that a GA with a large population
size might actually conform to the SBBH. This is not that case. Even in the unlikely
event that we would run a GA with population size of 2L or more, the GA would still
compute a biased estimate for the fitness of schema after the initial generation. See
(Grefenstette & Baker, 1989) for an example. Having a large population does not in any
way ensure that one will have "enough samples to provide reliable estimates of
hyperplane fitness" (Spears & De Jong, 1991), since the samples will not be chosen from
a uniform distribution which each schema, but instead will be chosen is a highly biased
way, emphasizing the elements of each schema that are more highly fit. Large
populations cannot save the SBBH.

There has been some recent work that addresses the (static) fitness variance within
schemas (Goldberg and Rudnick, 1988; Rudnick and Goldberg, 1991). This is certainly
a step in the right direction, but it is unlikely that an analysis of the static fitness variance
will be any more helpful than an analysis of the static fitness averages. As the search
proceeds, the observed variance associated with hyperplanes in the population is
unlikely to have correlation with the static variance.




5 AUGMENTED GAs SOLVE DECEPTIVE PROBLEMS

As the two examples above show, the relationship between deception and GA-hardness
seems pretty tenuous. Nevertheless, there is a growing literature concerning how to
make GAs more effective on deceptive problems. For example, Liepins and Vose (1991)
specify representation transformations that render deceptive problems "fully easy".
Goldberg at. al (1991) define messy GAs in order to deal with problems with bounded
deception. In this section, we show that, even if the SBBH were true, slight changes to
the basic GA would be sufficient to solve most deceptive problems that have been
studied.

Much of the work on deception involves functions for which the bit-wise complement of
the global optimum is the deceptive attractor (Liepins and Vose, 1991; Whitley, 1991).
In fact, arguments have been made that all deceptive problems have this feature
(Whitley, 1992). For the purpose of this section, let us accept this argument and let us
suppose that a GA would actually perform according to the SBBH on these fully
deceptive problems. That is, we suppose the GA really does converge to the
complement of the global optimum. Leaving aside for the moment the interesting
question of whether this behavior should actually count as a failure of the GA (Mitchell
& Forrest, 1991), we can easily describe an augmented GA that finds the global optimum
in all such problems.

The augmented GA shown in Figure 1. The lines marked with (*) represent the only
changes to a standard GA. In the augmented version, we maintain two separate
populations of size N, called P and Q. During each generation, we update P according to
the original GA, and set the members of Q to the bitwise complement of the

corresponding elements of P.

Consider any problem for which the original GA (i.e., the one without the (*) lines) finds
an acceptable solution in time t, using a population of size N. Then the augmented
algorithm finds a solution that is at least as good as the original GA, in at most twice the
amount of time (assuming that the evaluation time dominates the other operations in the
algorithms). In addition, the augmented algorithm solves any fully deceptive problem
that has the property that the global optimum is the binary complement of the deceptive
attractor, since as soon as the population P produces a copy of the deceptive attractor,
the population Q produces a copy of the global optimum. Thus the augmented GA can
produce a final answer that is never worse than the one produced by the original GA, and
it eliminates the problem of deception, all at a cost of only doubling the computational
time.” A reasonable conclusion of this discussion is that deception is simply a non-

7 There are many possible variations on this theme. For example, it may be desirable to allow
recombination across populations P and Q on "partially deceptive" problems. Exploration of these variations




procedure Augmented GA

begin
t=0;
initialize P(t);

*) Q) = complement(P(t);
evaluate structures in P(t);
while termination condition not satisfied do
begin

t=t+1;
select P(t) from P(t-1);
alter structures in P(t);

(*) Q(t) = complement(P(t));
evaluate structures in P(t);
*) evaluate structures in Q(t);

output best structure in P(t) ( Q(t);
end
end.

Figure 1: A Genetic Algorithm.

problem for GAs. It can easily be handled by a low-cost alteration of the basic GA.

In practice, it would be unwise to actually implement this “solution”, unless one really
accepts that the GA performs according to the SBBH. Since this is not the case, the
above solution would in all probability be a mere waste of effort.

6 SUMMARY

This note criticizes the notion of deception in GAs that arises from the Strong Building
Block Hypothesis. According to the SBBH, deceptive problems ought to be difficult for
GAs to solve, and "GA-easy” problems ought to be easy for GAs to solve. We have
identified two reasons why the SBBH is false:

1. Biased sampling due to previous convergence.

will be deferred until a more robust form of "deception” has been identi fied.




2. Large variance within schemas and limited population size.
Taking these reasons into account, it is easy to demonstrate that:
1. Some highly deceptive problems are easy for GAs to optimize.

2. Some "GA-easy" problems with no deception are nearly impossible for
GAs to optimize.

The examples show that, at the very least, the term deceptive is poorly chosen. More
importantly, the examples illustrate that it is in general impossible to predict the
dynamic behaviors of GAs on the basis of the static average fitness of hyperplanes.
Finally, the previous section showed that, even assuming that GAs perform according to
the SBBH, deceptive problems can be solved by a simple augmented GA. Thus,
deception as it is usually defined is truly a non-problem for GAs.

Some of the concerns about the notion of deception have been raised by others, in
particular Mitchell and Forrest (1991). These points bear further examination in this
forum, to combat the apparent trend among new researchers in GA Theory to continue to
flock to the analysis of deception. It is disturbing that much of what passes for GA
Theory seems to assume the SBBH as a starting point. If this continues, we will reach a
point where "GA Theory" deals with algorithms (if there are any) that satisfy the SBBH.
Unfortunately, the GA is not one of those algorithms.

It goes without saying that the characterization of hard problems should remain a high
priority for the GA research community. However, the characterization must take into
account the basic features of the GA, especially its dynamic, biased sampling strategy.
Our primary point is that the effort currently being expended on the static analysis of
functions should be diverted to the dynamic analysis of GAs. One might argue that the
work to date on deception has been a preliminary exploration of how to analyze simple
distributions of fitness, and was always intended to be replaced by dynamic analysis. It
is gratifying to see some recent efforts in this direction (Bridges and Goldberg, 1991;
Liepins and Vose, 1991). Nevertheless, it is important that articles on GA theory avoid
the implicit assumption of the SBBH. The SBBH is such an attractive and intuitive
explanation for the power of the GA that it can easily mislead newcomers to the field, as
well as potential users of the technology.
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